Current Research

Home / Current Research

The lab is currently focused on the role of molecular motors in generating and regulating cardiac contraction. The heart is a finely tuned machine that fills with blood during relaxation and then contracts, generating force and power to deliver this blood to the rest of the body. When this cycle of relaxation and contraction is impaired, as is seen in patients with cardiomyopathies, this can lead to heart failure and arrhythmias. Inherited cardiomyopathies are found in up to 1 in every 500 people and these conditions are the leading cause of sudden cardiac death in young people. It is known that the most common cause of these cardiomyopathies is the mutation of the proteins involved in generating and regulating force and power output in the heart. Moreover, it is known that these mutations lead to changes in the structure and contractile properties of cardiac tissue; however, the link between molecular mutations and alterations in the tissue properties is not well understood. Using single molecule and tissue engineering techniques, our research will help to fill in this important gap in our knowledge. Importantly, our multi-tiered approach will give us an unprecedented understanding of how the heart generates force and power in both health and disease. This understanding may help facilitate the eventual design of targeted therapies for cardiomyopathies.